Bibliografia
Barnard, Stephen T., and Martin A. Fischler. 1982. “Computational
Stereo.” ACM Computing Surveys 14 (4):
553–72. https://doi.org/10.1145/356893.356896.
Barrow, H. G., and J. M. Tenenbaum. 1981. “Computational
Vision.” Proceedings of the IEEE 69 (5): 572–95. https://doi.org/10.1109/PROC.1981.12026.
Barthelme, Simon. 2023. “Imager: Image Processing Library Based on
’CImg’.” https://CRAN.R-project.org/package=imager.
Blake, Andrew, and Michael Isard. 2012. Active
Contours: The Application of
Techniques from Graphics, Vision,
Control Theory and Statistics to Visual
Tracking of Shapes in Motion.
Springer Science & Business Media.
Blake, Andrew, Andrew Zisserman, and Greg Knowles. 1985. “Surface
Descriptions from Stereo and Shading.” Image and Vision
Computing, Papers from the 1985 Alvey Computer Vision
and Image Interpretation Meeting, 3 (4): 183–91. https://doi.org/10.1016/0262-8856(85)90006-X.
Burger, Wilhelm, and Mark J. Burge. 2016. Digital Image
Processing: An Algorithmic Introduction Using
Java. Texts in Computer Science.
London: Springer. https://doi.org/10.1007/978-1-4471-6684-9.
Canny, John. 1986. “A Computational Approach to
Edge Detection.” IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-8 (6): 679–98. https://doi.org/10.1109/TPAMI.1986.4767851.
Chollet, Francois, and J. J. Allaire. 2018. Deep
Learning with R. Manning
Publications.
Ciresan, Dan C, Ueli Meier, Jonathan Masci, Luca M Gambardella, and
Jurgen Schmidhuber. n.d. “Flexible, High Performance
Convolutional Neural Networks for Image
Classification.”
“Cooperative Computation of Stereo
Disparity | Science.” n.d.
https://www.science.org/doi/10.1126/science.968482.
Davis, Larry S. 1975. “A Survey of Edge Detection
Techniques.” Computer Graphics and Image Processing 4
(3): 248–70. https://doi.org/10.1016/0146-664X(75)90012-X.
“Deep Learning with Python, Second
Edition.” n.d. Manning Publications.
https://www.manning.com/books/deep-learning-with-python-second-edition.
Dev, Parvati. 1975. “Perception of Depth Surfaces in Random-Dot
Stereograms : A Neural Model.” International Journal of
Man-Machine Studies 7 (4): 511–28. https://doi.org/10.1016/S0020-7373(75)80030-7.
Felzenszwalb, Pedro F., and Daniel P. Huttenlocher. 2005.
“Pictorial Structures for Object
Recognition.” International Journal of Computer
Vision 61 (1): 55–79. https://doi.org/10.1023/B:VISI.0000042934.15159.49.
Fergus, R., P. Perona, and A. Zisserman. 2007. “Weakly
Supervised Scale-Invariant Learning of Models
for Visual Recognition.” International Journal
of Computer Vision 71 (3): 273–303. https://doi.org/10.1007/s11263-006-8707-x.
Fischler, M., and O. Firschein. 1987. “Readings in Computer
Vision: Issues, Problems, Principles, and Paradigms.” In.
Garnier, Simon, and John Muschelli. 2022.
“Rvision - a Computer Vision Library for
r.” https://swarm-lab.github.io/Rvision/.
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep
Learning. Illustrated edition. Cambridge,
Massachusetts: The MIT Press.
Hanson, Allen. 1978. Computer Vision Systems.
Elsevier.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015.
“Deep Residual Learning for Image
Recognition.” arXiv. https://doi.org/10.48550/arXiv.1512.03385.
Horn, Berthold K P. n.d. “Obtaining Shape from
Shading Information.”
Ioffe, Sergey, and Christian Szegedy. 2015. “Batch
Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate
Shift.” arXiv. https://doi.org/10.48550/arXiv.1502.03167.
Kass, Michael, Andrew Witkin, and Demetri Terzopoulos. 1988.
“Snakes: Active Contour Models.”
International Journal of Computer Vision 1 (4): 321–31. https://doi.org/10.1007/BF00133570.
Ketkar, Nikhil, and Eder Santana. 2017. Deep Learning with
Python. Vol. 1. Springer.
Kirsch, Russell A. 1971. “Computer Determination of the
Constituent Structure of Biological Images.” Computers and
Biomedical Research 4 (3): 315–28. https://doi.org/10.1016/0010-4809(71)90034-6.
Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017.
“ImageNet Classification with Deep Convolutional Neural
Networks.” Communications of the ACM 60 (6): 84–90. https://doi.org/10.1145/3065386.
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. “Deep
Learning.” Nature 521 (7553): 436–44. https://doi.org/10.1038/nature14539.
Malladi, R., J. A. Sethian, and B. C. Vemuri. 1995. “Shape
Modeling with Front Propagation: A Level Set Approach.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 17 (2):
158–75. https://doi.org/10.1109/34.368173.
Marr, D., and E. Hildreth. 1980. “Theory of Edge
Detection.” Proceedings of the Royal Society of London.
Series B, Biological Sciences 207 (1167): 187–217. https://doi.org/10.1098/rspb.1980.0020.
“Mind as Machine: A History of Cognitive Science.” 2007.
Choice Reviews Online 44 (11). https://doi.org/10.5860/choice.44-6202.
Mundy, Joseph L., and Andrew Zisserman, eds. 1992. Geometric
Invariance in Computer Vision. Cambridge, MA, USA:
MIT Press.
Nalwa, Vishvjit S., and Thomas O. Binford. 1986. “On
Detecting Edges.” IEEE Transactions on Pattern
Analysis and Machine Intelligence PAMI-8 (6): 699–714. https://doi.org/10.1109/TPAMI.1986.4767852.
Niedballa, Juergen, and Jan Axtner. 2022. “Imageseg: Deep Learning
Models for Image Segmentation.” https://CRAN.R-project.org/package=imageseg.
Ochi, Shota. 2019. “imagerExtra: Extra Image Processing Library
Based on ’Imager’.” https://CRAN.R-project.org/package=imagerExtra.
Olivoto, Tiago. 2021. “Pliman: Tools for Plant Image
Analysis.” https://CRAN.R-project.org/package=pliman.
Ooms, Jeroen. 2023. “Magick: Advanced Graphics and
Image-Processing in r.” https://CRAN.R-project.org/package=magick.
“Optical and Electro-Optical Information
Processing.” n.d. MIT Press.
“Picture Processing and Psychopictorics
- 1st Edition.” n.d.
https://www.elsevier.com/books/picture-processing-and-psychopictorics/lipkin/978-0-12-451550-5.
Ponce, Jean, Martial Hebert, Cordelia Schmid, and Andrew Zisserman.
2007. Toward Category-Level Object Recognition.
Springer.
Roberts, Lawrence G. 1980. Machine Perception of Three-dimensional Solids. Garland
Pub.
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. 2015.
“U-Net: Convolutional Networks for
Biomedical Image Segmentation.” arXiv.
https://doi.org/10.48550/arXiv.1505.04597.
Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. 2020.
“Grad-CAM: Visual Explanations from
Deep Networks via Gradient-based
Localization.” International Journal of Computer
Vision 128 (2): 336–59. https://doi.org/10.1007/s11263-019-01228-7.
Simonyan, Karen, and Andrew Zisserman. 2014. “Very Deep
Convolutional Networks for Large-Scale Image Recognition.” https://doi.org/10.48550/ARXIV.1409.1556.
Szeliski, Richard. 2022. Computer Vision:
Algorithms and Applications. Texts in
Computer Science. Cham: Springer
International Publishing. https://doi.org/10.1007/978-3-030-34372-9.
Winston, Patrick Henry. 1976. “The Psychology of Computer
Vision.” Pattern Recognition 8 (3): 193. https://doi.org/10.1016/0031-3203(76)90020-0.
Witkin, Andrew P. 1981. “Recovering Surface Shape and Orientation
from Texture.” Artificial Intelligence 17 (1): 17–45. https://doi.org/10.1016/0004-3702(81)90019-9.
Woodham, Robert J. 1981. “Analysing Images of Curved
Surfaces.” Artificial Intelligence 17 (1): 117–40. https://doi.org/10.1016/0004-3702(81)90022-9.
Zhang, T. Y., and C. Y. Suen. 1984. “A Fast Parallel Algorithm for
Thinning Digital Patterns.” Communications of the ACM 27
(3): 236–39. https://doi.org/10.1145/357994.358023.
Zhou, Zongwei, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and
Jianming Liang. 2018. “UNet++: A Nested U-Net
Architecture for Medical Image Segmentation.”
arXiv. https://doi.org/10.48550/arXiv.1807.10165.