References
3.4 Evaluating Forecast Accuracy |
Forecasting: Principles and
Practice (2nd Ed). n.d.
Bellon-Maurel, Véronique, Elvira Fernandez-Ahumada, Bernard Palagos,
Jean-Michel Roger, and Alex McBratney. 2010. “Critical Review of
Chemometric Indicators Commonly Used for Assessing the Quality of the
Prediction of Soil Attributes by NIR Spectroscopy.”
TrAC Trends in Analytical Chemistry 29 (9): 1073–81. https://doi.org/10.1016/j.trac.2010.05.006.
Bohachevsky, Ihor O., Mark E. Johnson, and Myron L. Stein. 1986.
“Generalized Simulated Annealing for Function
Optimization.” Technometrics 28 (3): 209–17. https://doi.org/10.1080/00401706.1986.10488128.
Bolstad, Benjamin Milo. 2004. Low-Level Analysis of
High-density Oligonucleotide Array Data:
Background, Normalization and
Summarization. University of California,
Berkeley.
Booth, Gordon D., George E. P. Box, William G. Hunter, and J. Stuart
Hunter. 1979. “Statistics for Experimenters: An Introduction to
Design, Data Analysis, and Model Building.” Journal of the
American Statistical Association 74 (367): 731. https://doi.org/10.2307/2287009.
Couch, Simon P., Andrew P. Bray, Chester Ismay, Evgeni Chasnovski,
Benjamin S. Baumer, and Mine Çetinkaya-Rundel. 2021.
“Infer: An r
Package for Tidyverse-Friendly Statistical Inference” 6: 3661. https://doi.org/10.21105/joss.03661.
Craig-Schapiro, Rebecca, Max Kuhn, Chengjie Xiong, Eve H. Pickering,
Jingxia Liu, Thomas P. Misko, Richard J. Perrin, et al. 2011.
“Multiplexed Immunoassay Panel Identifies Novel CSF Biomarkers for
Alzheimer’s Disease Diagnosis and Prognosis.” Edited by Ashley I.
Bush. PLoS ONE 6 (4): e18850. https://doi.org/10.1371/journal.pone.0018850.
Davison, A. C., and D. V. Hinkley. 1997. “Bootstrap Methods and
Their Application,” October. https://doi.org/10.1017/cbo9780511802843.
Franses, Philip Hans. 2016. “A Note on the Mean Absolute
Scaled Error.” International Journal of
Forecasting 32 (1): 20–22. https://doi.org/10.1016/j.ijforecast.2015.03.008.
Frazier, Peter I. 2018. “A Tutorial on Bayesian
Optimization.” https://doi.org/10.48550/ARXIV.1807.02811.
Friedman, Jerome H. 2001. “Greedy Function Approximation: A
Gradient Boosting Machine.” The Annals of Statistics 29
(5). https://doi.org/10.1214/aos/1013203451.
Gentleman, Robert, Vincent Carey, Wolfgang Huber, Sandrine Dudoit, and
Rafael Irizarry. 2005. Bioinformatics and Computational
Biology Solutions Using R and Bioconductor.
Springer.
Hill, Andrew A, Peter LaPan, Yizheng Li, and Steve Haney. 2007.
“Impact of Image Segmentation on High-Content Screening Data
Quality for SK-BR-3 Cells.” BMC Bioinformatics 8 (1). https://doi.org/10.1186/1471-2105-8-340.
Hosmer, David W., and Stanley Lemeshow. 2000. Applied Logistic
Regression. John Wiley & Sons, Inc. https://doi.org/10.1002/0471722146.
Hyndman, Rob J., and Anne B. Koehler. 2006. “Another Look at
Measures of Forecast Accuracy.” International Journal of
Forecasting 22 (4): 679–88. https://doi.org/10.1016/j.ijforecast.2006.03.001.
Hyndman, Robin John, and George Athanasopoulos. 2018. Forecasting:
Principles and Practice. 2nd ed. Australia: OTexts.
Johnson, Dan, Phoebe Eckart, Noah Alsamadisi, Hilary Noble, Celia
Martin, and Rachel Spicer. 2018. “Polar Auxin Transport Is
Implicated in Vessel Differentiation and Spatial Patterning During
Secondary Growth in Populus.” American Journal
of Botany 105 (2): 186–96. https://doi.org/10.1002/ajb2.1035.
Joseph, V. Roshan. 2022. “Optimal Ratio for Data
Splitting.” Statistical Analysis and Data Mining: The ASA
Data Science Journal 15 (4): 531–38. https://doi.org/10.1002/sam.11583.
Joseph, V. Roshan, Evren Gul, and Shan Ba. 2015. “Maximum
Projection Designs for Computer Experiments.” Biometrika
102 (2): 371–80. https://doi.org/10.1093/biomet/asv002.
Khun, M., and K. Johnson. 2013. Applied Predictive
Modeling. New York: Springer.
Kim, Jungsu, Jacob M. Basak, and David M. Holtzman. 2009. “The
Role of Apolipoprotein E in Alzheimer’s Disease.” Neuron
63 (3): 287–303. https://doi.org/10.1016/j.neuron.2009.06.026.
Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. 1983.
“Optimization by Simulated Annealing.” Science 220
(4598): 671–80. https://doi.org/10.1126/science.220.4598.671.
Koklu, Murat, and Ilker Ali Ozkan. 2020. “Multiclass
Classification of Dry Beans Using Computer Vision and Machine Learning
Techniques.” Computers and Electronics in Agriculture
174 (July): 105507. https://doi.org/10.1016/j.compag.2020.105507.
Kuhn, Max, and Kjell Johnson. 2019. Feature Engineering and
Selection. Chapman; Hall/CRC. https://doi.org/10.1201/9781315108230.
———. 2021. Feature Engineering and
Selection: A Practical Approach for
Predictive Models. Taylor & Francis
Group.
Kuhn, Max, and Hadley Wickham. 2020. “Tidymodels: A Collection of
Packages for Modeling and Machine Learning Using Tidyverse
Principles.” https://www.tidymodels.org.
Kvalseth, Tarald O. 1985. “Cautionary Note about
R2.” The American Statistician 39 (4):
279–85. https://doi.org/10.2307/2683704.
Laarhoven, Peter J. M. van, and Emile H. L. Aarts. 1987.
“Simulated Annealing.” In, 7–15. Springer Netherlands. https://doi.org/10.1007/978-94-015-7744-1_2.
Maron, Oded, and Andrew Moore. 1993. “Hoeffding Races:
Accelerating Model Selection Search for Classification and
Function Approximation.” In Advances in Neural Information
Processing Systems, edited by J. Cowan, G. Tesauro, and J.
Alspector. Vol. 6. Morgan-Kaufmann.
McKay, M. D., R. J. Beckman, and W. J. Conover. 1979. “A
Comparison of Three Methods for Selecting Values of Input Variables in
the Analysis of Output from a Computer Code.”
Technometrics 21 (2): 239. https://doi.org/10.2307/1268522.
Menardi, Giovanna, and Nicola Torelli. 2012. “Training and
Assessing Classification Rules with Imbalanced Data.” Data
Mining and Knowledge Discovery 28 (1): 92–122. https://doi.org/10.1007/s10618-012-0295-5.
Mingqiang, Yang, Kpalma Kidiyo, and Ronsin Joseph. 2008. “A Survey
of Shape Feature Extraction Techniques.” In. InTech. https://doi.org/10.5772/6237.
Schulz, Eric, Maarten Speekenbrink, and Andreas Krause. 2016. “A
Tutorial on Gaussian Process Regression: Modelling, Exploring, and
Exploiting Functions.” http://dx.doi.org/10.1101/095190.
Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de
Freitas. 2016. “Taking the Human Out of the Loop: A Review of
Bayesian Optimization.” Proceedings of the IEEE 104 (1):
148–75. https://doi.org/10.1109/jproc.2015.2494218.
Shewry, M. C., and H. P. Wynn. 1987. “Maximum Entropy
Sampling.” Journal of Applied Statistics 14 (2): 165–70.
https://doi.org/10.1080/02664768700000020.
Thomas, Rachel, and David Uminsky. 2020. “The Problem with Metrics
Is a Fundamental Problem for AI.” https://doi.org/10.48550/ARXIV.2002.08512.
Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy
D’Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019.
“Welcome to the Tidyverse.” Journal of Open Source
Software 4 (43): 1686. https://doi.org/10.21105/joss.01686.
Xu, Qing-Song, and Yi-Zeng Liang. 2001. “Monte Carlo Cross
Validation.” Chemometrics and Intelligent Laboratory
Systems 56 (1): 1–11. https://doi.org/10.1016/s0169-7439(00)00122-2.
Yeh, I.-Cheng. 2006. “Analysis of Strength of
Concrete Using Design of Experiments and
Neural Networks.” Journal of Materials in Civil
Engineering 18 (4): 597–604. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597).